

Overview and Installation

- Bilby is a modular Bayesian Inference code written in Python.
- Primarily for compact binary coalescence parameter estimation, but versatile enough for other problems
- Waveforms from lalsimulation, data processing tools from gwpy
- Out of the box use:
 - pip install bilby
- Install from source to contribute to developing:
 - Clone from git.ligo.org
 - Full instructions: https://lscsoft.docs.ligo.org/bilby/installation.html

Structure

Priors

- Other priors: delta function, power law, log-uniform, cosine, etc.
- Interpolate from a file or array
 - Ex: uniform in comoving volume
- Sample, transform from unit cube, calculate probability
- Group individual parameters into a PriorDict
- Set them from a .prior file or directly in the code
- Built-in defaults for CBCs
- Can also set constraints on unsampled parameters

Likelihood

- Common built-in classes like GaussianLikelihood, PoissonLikelihood, StudentTLikelihood
- Write your own likelihood class using the parent Likelihood
- For gravitational-wave analyses:
 - GravitationalWaveTransient
 - ROQGravitationalWaveTransient

Sampling and Output

- Wrapper to external samplers
 - Nested: pynesty, pymultinest, nestle, cpnest
 - MCMC: emcee, pymc3, ptemcee
- Saves both the sampler output and the refactored bilby result object
- Bilby output is json file by default, can also save as hdf5
- Results plotted using corner package

Gravitational Wave Data

- WaveformGenerator object computes the waveform polarizations independent of the detector
- Interferometer and PowerSpectralDensity objects:
 - Load a default IFO or make your own anywhere in the world with any PSD
 - Calculate the PSD from frame data or load it from a file
 - Load GWOSC event data
 - Generate Gaussian noise
 - Inject signals

Gravitational Wave PE

- Generate injections from the default prior
- Sample in any combination of parameters: chirp mass, total mass, symmetric or asymmetric mass ratio, redshift, comoving distance
- Analytically marginalized likelihoods for time, phase, and distance

Can also conduct hierarchical inference with the built-in module

Additional Resources

- Gitlab repo: https://git.ligo.org/lscsoft/bilby
- Documentation: https://lscsoft.docs.ligo.org/bilby/
- Slack workspace: bilby-code.slack.com
- GWTC-1 analysis: https://github.com/IsobelMarguarethe/Bilby-GWTC-1-Analysis-and-Verification/tree/v2.0
- Papers:
 - https://arxiv.org/abs/1811.02042
 - https://arxiv.org/abs/2006.00714